The prickle-Related Gene in Vertebrates Is Essential for Gastrulation Cell Movements
نویسندگان
چکیده
منابع مشابه
The prickle-Related Gene in Vertebrates Is Essential for Gastrulation Cell Movements
Involving dynamic and coordinated cell movements that cause drastic changes in embryo shape, gastrulation is one of the most important processes of early development. Gastrulation proceeds by various types of cell movements, including convergence and extension, during which polarized axial mesodermal cells intercalate in radial and mediolateral directions and thus elongate the dorsal marginal z...
متن کاملE-cadherin is required for gastrulation cell movements in zebrafish
E-cadherin is a member of the classical cadherin family and is known to be involved in cell-cell adhesion and the adhesion-dependent morphogenesis of various tissues. We isolated a zebrafish mutant (cdh1(rk3)) that has a mutation in the e-cadherin/cdh1 gene. The mutation rk3 is a hypomorphic allele, and the homozygous mutant embryos displayed variable phenotypes in gastrulation and tissue morph...
متن کاملZebrafish Prickle, a Modulator of Noncanonical Wnt/Fz Signaling, Regulates Gastrulation Movements
In addition to the canonical Wnt/beta-catenin signaling pathway, at least two noncanonical Wnt/Fz pathways have been described: the planar cell polarity (PCP) pathway in Drosophila [1] and the Wnt/calcium pathway in vertebrate embryos [2]. Recent work suggests that a vertebrate pathway homologous to the PCP pathway acts to regulate the convergent extension movements of gastrulation [3-7]. To fu...
متن کاملVertebrate gastrulation: Calcium waves orchestrate cell movements
A recent study reveals that the propagation of intercellular calcium signals is closely associated with the generation of convergent extension movements during Xenopus gastrulation. Such signals provide a mechanism whereby large populations of cells can communicate to generate orchestrated cell movements.
متن کاملLmbrd1 expression is essential for the initiation of gastrulation
The rare inborn cblF defect of cobalamin metabolism is caused by mutations in the limb region 1 (LMBR1) domain containing 1 gene (LMBRD1). This defect is characterized by massive accumulation of free cobalamin in lysosomes and loss of mitochondrial succinyl-CoA synthesis and cytosolic methionine synthesis. Affected children suffer from heart defects, developmental delay and megaloblastic anemia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Biology
سال: 2003
ISSN: 0960-9822
DOI: 10.1016/s0960-9822(03)00245-8